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Summary: The physical properties of porous and granular materials critically depend on the topological and
geometric details of the material micro-structure. This type of information is summarised by a mathematical
tool called persistent homology. Our work with CT images has demonstrated how persistent homology highlights
physically-relevant length scales and provides a summary of important structural features.

1. INTRODUCTION

Topology is the study of those aspects of shape that cannot be changed by a continuous deformation. For 3D
objects, this encompasses quantities such as the number of pieces, N , number of independent loops, L, number
of cavities, O, and Euler characteristic, χ = N−L+O. Since these topological quantities are insensitive to size,
small and large features are counted with the same weight leading to a lack of stability with respect to noise.

Persistent homology is a mathematical theory developed in the late 1990’s to overcome this and address the
challenge of extracting robust topological information from finite, noisy data. To do so, we must build a nested
sequence of objects, ordered by some parameter. For 3D images, the data are scalar values, f(x), at vertices of
a regular cubical grid, C, the parameter is a threshold value, h, and the nested objects are the lower level cuts
of the image function at increasing values of the threshold:

Lf (h) = {cells σ in C such that f(x) ≤ h for each x a vertex of σ }. (1)

As the threshold h increases, we see that topological features such as a loop are born at some parameter value
b, and then later become filled in or “die” at a larger value, d. A persistence barcode, or persistence diagram,
records these parameter values as a pair (b, d) for each topological feature detected in the image. The persistence
of the feature is d−b, and so the numbers of components, loops, cavities and Euler characteristic with persistence
greater than a chosen amount, p, can be recovered by counting points with d − b > p from the appropriate
diagram.

A key result for applications is that persistent homology is stable in the sense that if two functions f, g
defined on the same cell complex C have |f(x)− g(x)| < ε for all x ∈ C then points in the persistence diagrams
of f and g are also close in a suitable sense [1].

2. EXPERIMENTAL METHOD

To characterise the geometry and topology of two-phase structures imaged using micro-CT data, we begin with
a segmented image where voxels are assigned to either “grain”, G, or “pore”, P . We then compute a signed
Euclidean distance function (SEDT) f(x) as the distance from a voxel x to the closest point on the interface, I,
between grain G and pore P . We assign negative distances to voxels in the pore phase and positive distances
to those in the grain phase.

f(x) =

{
−miny∈I ||x− y||2 if x ∈ P
miny∈I ||x− y||2 if x ∈ G

(2)

We compute persistent homology using an implementation based on discrete Morse theory and outlined in
the papers [5]. Our code package, diamorse, has been optimised for micro-CT images is available from github.
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A good segmentation remains essential here to obtain an SEDT that accurately reflects the geometry and
topology of the two-phase structure. Mis-identified voxels create an error in f(x) that depends on the distance
from x to the interface I.

3. RESULTS

We have shown that persistent homology of SEDTs derived from micro-CT images give a clear signature of the
onset of crystallisation in bead packs [6], the degree of consolidation in granular materials [2], highlights the
percolation threshold [4], and can correlate to physical properties such as fluid permeability and non-wetting
phase trapping capacity in sandstones [3].

Figure 1: Top A sequence of lower level sets of the SEDT function f(x) derived from a micro-CT image of a
bead pack with three different radii. The interface between grain and pore phase is highlighted by a two-voxel
wide contour around f(x) = 0. Bottom The corresponding persistence diagrams PD0, PD1, PD2, showing the
persistence pairs for connected components, loops and cavities respectively.
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